
Dynamics of composition operators

Daniel Gomes

Contents

1 Linear Dynamics 1

2 Weighted Shifts 3

3 Composition Operators 5

1 Linear Dynamics

In linear dynamics, as the name suggests, we are interested in studying the dynamics of linear operators
T : X → X , where X is a separable topological vector space. In this notes, we shall consider only
operators acting on Banach spaces, that is, complete normed spaces, although many of the results are
valid in more general spaces (such as Fréchet or F -spaces). The results and examples of this and the
next sections can be found in the excellent books [1] and [4], both of which treat linear dynamics in
depth.

A very natural kind of chaotic behavior that one can think for a dynamical system is admitting a
point for which the orbit is dense:

Definition 1.1. We say that T : X → X is hypercyclic if there exists x ∈ X such that the set

orb(x,T) = {Tn(x) : n ∈ N}

is dense in X .

A powerful tool to show that an operator is hypercyclic is Birkhoff transitivity theorem, by showing
that it is topologically transitive:

Definition 1.2. We say that T : X → X is topologically transitive if for any pair of nonempty open
sets U, V ⊆ X , there exists some n ≥ 0 such that Tn(U) ∩ V ̸= ∅.

Theorem 1.3 (Birkhoff transitivity theorem). Let T : X → X be a continuous map on a separable
complete metric space without isolated points. Then the following are equivalent:

(1) T is topologically transitive;

(2) T admits a point with dense orbit.

If any of these conditions hold, the set of points with dense orbit is a Gδ-set.

Proof. (2) =⇒ (1): Suppose that the orbit of x ∈ X is dense. Since X does not have isolated points,
the orbit of T p(x) is also dense, for any integer p ≥ 0. Now let U, V ⊆ X be a pair of nonempty open
sets. Let n ≥ 0 be such that Tn(x) ∈ U . As the orbit of Tn(x) is dense, there exists m ≥ n such that
Tm(x) ∈ V . Hence Tm−n(U) ∩ V ̸= ∅.
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(1) =⇒ (2): Since X is metrizable and separable, it admits a countable base of nonempty open
sets (Uk)k≥1. Let HC(T ) ⊆ X be the set of points in X that have dense orbit under T . Note that
x ∈ HC(T ) if, and only if, for every k ≥ 1, there exists n ≥ 0 such that Tn(x) ∈ Uk. That is,

HC(T ) =

∞⋂
k=1

∞⋃
n=0

T−n(Uk).

By continuity of T , for every k ≥ 1 the set
⋃∞

n=0 T
−n(Uk) is open, and by the topological transitivity,

it is also dense. By the Baire category theorem, the set HC(T ) is a Gδ-set, in particular it is nonempty.

Remark. We did not require that T is linear in the previous theorem.

The next example illustrates how we can use this theorem to show that an operator is hypercyclic.

Example 1.4 (Rolewicz’s operators). Let X = ℓp and T : ℓp → ℓp be given by

T (x1, x2, x3, . . .) = (λx2, λx3, λx4, . . .),

where λ ∈ K. If |λ| ≤ 1, for all x ∈ X and all n ∈ N we have ∥Tn(x)∥ = |λ|n ·∥(xn+1, xn+2, . . .)∥ ≤ ∥x∥,
so that T cannot be hypercyclic.

Suppose now that |λ| > 1. Let U, V ⊆ X be nonempty open sets. Since the set of finite sequences
is dense, there exists N ∈ N and points x, y ∈ ℓp of the form

x = (x1, . . . , xN , 0, 0, . . .) and y = (y1, . . . , yN , 0, 0, . . .)

such that x ∈ U and y ∈ V . Let n ≥ N . Define z ∈ X as

zk =


xk, 1 ≤ k ≤ N ;

λ−nyk−n, n+ 1 ≤ k ≤ n+N ;

0, otherwise.

Note that Tn(z) = y. We also have that ∥x − z∥ = |λ|−n∥y∥ → 0. Hence, we have that if n is
sufficiently large, z ∈ U and Tn(z) ∈ V . This shows that T is topologically transitive, so using
Birkhoff transitivity theorem we conclude that T is hypercyclic.

We can also study stronger notions of chaoticity. One of them is the notion of mixing operators:

Definition 1.5. We say that T : X → X is mixing if for any pair of nonempty open sets U, V ⊆ X ,
there exists some N0 ≥ 0 such that Tn(U) ∩ V ̸= ∅ for all n ≥ N0.

A very useful result that enables us to show that some operators are mixing is Kitai’s Criterion:

Theorem 1.6 (Kitai’s Criterion). Let T be an operator on a separable Banach space X . If there are
dense subsets X0,Y0 ⊆ X and a map S : Y0 → Y0 such that, for any x ∈ X0 and y ∈ Y0

(i) Tnx→ 0,

(ii) Sny → 0,

(iii) TSy = y,

then T is mixing.
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Proof. Let U, V ⊆ X be nonempty open sets and take x ∈ U ∩ X0 and y ∈ V ∩ Y0. Let ε > 0 be such
that B(x, ε) ⊆ U and B(y, ε) ⊆ V . By (i) and (ii), there exists N0 such that, for all n ≥ N0,

∥Tn(x)∥ < ε and ∥Sn(y)∥ < ε.

We have that, for all n ≥ N0,

∥x− (x+ Sn(y))∥ = ∥Sn(y)∥ < ε,

so that x+ Sn(y) ∈ U . Furthermore, using (iii),

∥Tn(x+ Sn(y))− y∥ = ∥Tn(x) + Tn(Sn(y))− y∥ = ∥Tn(x)∥ < ε,

showing now that Tn(x+ Sn(y)) ∈ V . Thus, Tn(U) ∩ V ̸= ∅ for all n ≥ N0.

Remark. 1) Note that we did not assume that S is linear or continuous in Kitai’s Criterion.
2) It is possible to show that there exist mixing operators that do not satisfy Kitai’s Criterion, see

[3] and [2].

As an application of Kitai’s Criterion, we show that if |λ| > 1, the associated Rolewicz’s operator
is mixing:

Example 1.7. Let us consider again the Rolewicz’s operators: let λ ∈ K be such that |λ| > 1 and
consider T : ℓp → ℓp given by

T (x1, x2, x3, . . .) = (λx2, λx3, λx4, . . .).

Take X0 = Y0 = c00, i.e. the space of finitely supported sequences, and let

S(x1, x2, x3, . . .) = (0, λ−1x1, λ
−1x2, λ

−1x3, . . .).

One can easily see that conditions (i)-(iii) of Kitai’s Criterion are satisfied. Hence, we have shown that
T is even mixing if |λ| > 1.

2 Weighted Shifts

This section is dedicated to a very important class of operators in linear dynamics that generalizes
Rolewicz’s operators: the one of weighted shifts.

Let w = (wn)n be a bounded sequence of nonzero scalars. We consider the operator Bw : ℓp → ℓp

given by
Bw(x1, x2, x3, . . .) = (w2x2, w3x3, w4x4, . . .).

Note that the boundedness of (wn) implies that Bw is well-defined and continuous.
In order to characterize the hypercyclic weighted shifts, we will need the following theorem, which

is a weaker version of Kitai’s Criterion. The proof is analogous to the latter, hence we omit it.

Theorem 2.1 (Hypercyclicity Criterion). Let T be an operator on a separable Banach space X . If
there are dense subsets X0,Y0 ⊆ X , a map S : Y0 → Y0 and a strictly increasing sequence (nk)k≥1

such that, for any x ∈ X0 and y ∈ Y0

(i) Tnkx→ 0,

(ii) Snky → 0,

(iii) TSy = y,

then T is hypercyclic.
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Theorem 2.2. Bw : ℓp → ℓp is hypercyclic if, and only if,

sup
n≥1

n∏
ν=1

|wν | = ∞.

Proof. Suppose first that Bw is hypercyclic and let x = (x1, x2, . . .) ∈ ℓp be a point with dense orbit.
We have that

Bn
w(x) =

(( n+1∏
ν=2

wν

)
xn+1,

( n+2∏
ν=3

wν

)
xn+2, . . .

)
.

As the orbit of x is dense, there exists a strictly increasing subsequence (nk)k≥1 such that

lim
k→∞

Bnk
w (x) = e1 = (1, 0, 0, . . .).

Thus ( nk+1∏
ν=2

wν

)
xnk+1 → 1.

Since x ∈ ℓp, we have that xnk+1 → 0, so that

( nk+1∏
ν=2

wν

)
→ ∞.

Now suppose that the condition holds. Let us show that Bw satisfies the Hypercyclicity Criterion.
Let X0 = Y0 = c00 be the dense subset of finite sequences and S = Fw : c00 → c00 be given by

Fw(x1, x2, x3, . . .) = (0, w−1
2 x1, w

−1
3 x2, . . .).

It is easy to see that conditions (i) and (iii) satisfied for the full sequence (n). For (ii), note that, for
every n ≥ 0,

Fn
w(ej) =

(
0, . . . 0︸ ︷︷ ︸
n+j−1

,

n+j∏
ν=j+1

w−1
ν , 0, 0, . . .

)
,

so that

∥Fn
w(ej)∥ =

n+j∏
ν=j+1

|wν |−1.

Let (nk)k be a strictly increasing sequence such that

nk+j∏
ν=j+1

|wν |−1 <
1

k

for every 1 ≤ j ≤ k. Hence,
Fnk
w (ej) → 0

for every j ≥ 1, so by linearity the result follows.

Using Kitai’s Criterion instead of the Hypercyclicity Criterion, one can also characterize mixing
weighted shifts:

Theorem 2.3. Bw : ℓp → ℓp is mixing if, and only if,

lim
n→∞

n∏
ν=1

|wν | = ∞.
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3 Composition Operators

For a more complete treatment on composition operators acting on spaces of measurable functions, we
refer to [5].

Let (X,B, µ) be a σ-finite measure space and f : X → X be a measurable function. We will assume
that f is a non-singular transformation, i.e. for every B ∈ B, µ(B) = 0 implies that µ(f−1(B)) = 0.
In this case, the push forward measure f∗µ, defined by f∗µ(B) = µ(f−1(B)), for every B ∈ B, is
absolutely continuous with respect to µ. By the Radon-Nikodym theorem, there exists a measurable
function g : X → [0,∞) such that

µ(f−1(B)) =

∫
B

gdµ, ∀B ∈ B.

Our goal will be to study the composition operator induced by f given by

Tf : Lp(µ) → Lp(µ)

φ 7→ φ ◦ f.

We first note that f being non-singular implies that Tf is well-defined:

Proposition 3.1. If f is non-singular, then the composition operator Tf is well-defined.

Proof. Let φ1, φ2 ∈ Lp(µ) such that φ1 = φ2 µ-almost everywhere. Then, there exists a set N ∈ B
such that µ(N) = 0 and

φ1(x) = φ2(x) ∀x ∈ X \N.

Hence φ1(f(x)) = φ2(f(x)) for all x ∈ X \ f−1(N). By the non-singularity of f , we have that
µ(f−1(N)) = 0, so that φ1 ◦ f = φ2 ◦ f µ-almost everywhere, showing that Tf is well-defined.

Remark. If f is not a non-singular transformation, then Tf is not necessarily well-defined. Indeed,
let X = [0, 1] with the Lebesgue measure and f : X → X be given by

f(x) =


2x, 0 ≤ x ≤ 1

2
;

1,
1

2
< x ≤ 1.

Since

µ({1}) = 0 and µ(f−1({1})) = µ([1/2, 1]) =
1

2
,

f is not non-singular.
Let

φ1 = χ[0,1) and φ2 = χ[0,1],

so that φ1 and φ2 represent the same element in Lp(µ), since they are equal µ-almost everywhere.
However, we have that, for every x ∈ [1/2, 1],

0 = φ1(f(x)) ̸= φ2(f(x)) = 1.

This shows that Tf is not well-defined.

Theorem 3.2. Tf : Lp(µ) → Lp(µ) is a continuous linear operator if, and only if, there exists c > 0
such that

µ(f−1(B)) ≤ cµ(B) ∀B ∈ B. (⋆)
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Proof. Suppose that Tf is continuous. Let B ∈ B be such that µ(B) <∞. We have that

µ(f−1(B)) =

∫
f−1(B)

1dµ =

∫
X

χB ◦ fdµ = ∥χB ◦ f∥p = ∥TfχB∥p ≤ ∥Tf∥p∥χB∥p = ∥Tf∥pµ(B).

By taking c = ∥Tf∥p, the result follows. The case where µ(B) = ∞ is always true.
Conversely, suppose that condition (⋆) holds. Let

g =
d(f∗µ)

dµ

be the Radon-Nikodym derivative of f∗µ with respect to µ. We claim that g ≤ c almost everywhere.
Indeed, suppose that there exists a measurable set A such that µ(A) > 0 and g(x) > c for every x ∈ A.
By the σ-finiteness of X, we may assume that µ(A) <∞. Then, we would have that

µ(f−1(A)) =

∫
A

gdµ > cµ(A),

contradicting our hypothesis and proving our claim.
Now let φ ∈ Lp(µ). We have

∥Tfφ∥p =

∫
X

|φ ◦ f |pdµ =

∫
X

|φ|pd(f∗µ) =
∫
X

|φ|pgdµ ≤ c ·
∫
X

|φ|pdµ = c · ∥φ∥p,

showing that Tf is continuous.

Remark. We have that condition (⋆) is equivalent to the boundedness of the Radon-Nikodym deriva-
tive

g =
d(f∗µ)

dµ
.

Indeed, by the proof of the previous theorem, we have that if (⋆) holds, then g is bounded. Conversely,
if g ≤ c and B ∈ B, then

µ(f−1(B)) =

∫
B

1d(f∗µ) =

∫
B

gdµ ≤ cµ(B).

We say that f−1(B) is essentially all of B, and denote it by f−1(B) =ess B, if given A ∈ B, there
exists B ∈ B such that µ(A∆f−1(B)) = 0.

To characterize hypercyclic composition operators, we will need the following lemmas.

Lemma 3.3. If f−1(B) =ess B, then for every A ∈ B and k ≥ 1, there exists B ∈ B such that

µ(f−k(B)∆A) = 0.

Lemma 3.4 ([6, Lemma 1]). If Tf has dense range, then f−1(B) =ess B.

Proof. Let A ∈ B be a set of finite measure. By hypothesis, there exists a sequence φn of functions
in Lp(µ) such that Tfφn → χA. By passing to a subsequence if necessary, we have that Tfφn → χA

almost everywhere, i.e. there exists N ∈ B such that µ(N) = 0 and, for all x ∈ X \N ,

Tfφn(x) = φn ◦ f(x) → χA(x).

Since Tfφn = φn ◦ f is f−1(B) measurable, we have that the restriction of χA to X \ N is f−1(B)
measurable. Thus there exists B ∈ B such that (X \N) ∩ A = f−1(B) and the result follows by the
σ-finiteness of B.
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Theorem 3.5. Tf : Lp(µ) → Lp(µ) is hypercyclic if, and only if, f−1(B) =ess B and for every
measurable set A of finite measure and any ε > 0, there exist a measurable set B ⊆ A and k ≥ 1 such
that

µ(A \B) < ε, µ(f−k(B)) < ε and µ∗(fk(B)) < ε.

Figure 1: Hypercyclicity for composition operators

Proof. Suppose first that Tf is hypercyclic, hence topologically transitive, by the Birkhoff transitivity
theorem. Since Tf has dense range, by Lemma 3.4 we get f−1(B) =ess B. Let A be a measurable set
of finite measure and ε > 0. There exist k ≥ 1 and φ ∈ Lp(µ) such that

∥φ− 2χA∥ <
ε

2
and ∥φ ◦ fk − 4χA∥ <

ε

2
.

Since

∥φ− 2χA∥p =

∫
{x∈X:|φ(x)−2χA(x)|<1}

|φ− 2χA|pdµ+

∫
{x∈X:|φ(x)−2χA(x)|≥1}

|φ− 2χA|pdµ

≥ µ({x ∈ X : |φ(x)− 2χA(x)| ≥ 1}),

we have
µ({x ∈ X : |φ(x)− 2χA(x)| ≥ 1}) < ε

2
. (1)

Analogously,

µ({x ∈ X : |φ ◦ fk(x)− 4χA(x)| ≥ 1}) < ε

2
. (2)

Now let
C = {x ∈ X : |φ(x)− 4| < 1} and D = {x ∈ X : |φ(x)− 2| < 1},

and define
B = D ∩ f−k(C) ∩A.

First, note that
A \D ⊆ {x ∈ X : |φ(x)− 2χA(x)| ≥ 1}

and
A \ f−k(C) ⊆ {x ∈ X : |φ ◦ fk(x)− 4χA(x)| ≥ 1},

so (1) and (2) imply that µ(A \B) < ε.
Next, we have that

f−k(D) ⊆ {x ∈ X : |φ ◦ fk(x)− 4χA(x)| ≥ 1},

and hence, by (2), µ(f−k(B)) ≤ µ(f−k(D)) < ε.
Finally,

C ⊆ {x ∈ X : |φ(x)− 2χA(x)| ≥ 1}.

Since fk(B) ⊆ C, by (1) we have that µ∗(fk(B)) < ε.
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Suppose now that the condition in the statement holds. Let U, V ⊆ Lp(µ) be a pair of nonempty
open sets. Since the set of simple functions is dense in Lp(µ), we have that there exist a measurable

set of finite measure A ⊆ X, simple functions ψ1 =
∑M

j=1 ajχAj , ψ2 =
∑M

j=1 bjχBj and η > 0 such
that Aj , Bj ⊆ A,

B(ψ1, η) ⊆ U and B(ψ2, η) ⊆ V.

Let L = 1 +
∑

j(|aj |+ |bj |).
Note that if E,F ⊆ X are measurable sets of finite measure such that µ(E∆F ) < (η/4L)p, then

∥χE − χF ∥p =
(∫

X

|χE − χF |pdµ
)1/p

= (µ(E∆F ))1/p < η/4L. (3)

By the condition in the statement, there exist a measurable set B ⊆ A and k ≥ 1 such that

µ(A \B) <
( η

4L

)p

, µ(f−k(B)) <
( η

4L

)p

and µ∗(fk(B)) <
( η

4L

)p

.

Let C ∈ B be such that fk(B) ⊆ C and µ(C) < (η/4L)p.
Let γ1 =

∑
j ajχAj∩B . Since

µ(Aj∆(Aj ∩B)) = µ(Aj \B) ≤ µ(A \B) <
( η

4L

)p

, (4)

we have by (3) that

∥χAj
− χAj∩B∥ <

η

4L
≤ η

2L
. (5)

By the triangle inequality,

∥ψ1 − γ1∥ <
η

2
. (6)

If we define γ2 =
∑

j bjχBj∩B , by a similar argument we get ∥ψ2 − γ2∥ < η/2.

Now since f−1(B) =ess B, by Lemma 3.3, for every j there exists Dj ∈ B such that

µ(f−k(Dj)∆(Bj ∩B)) = 0.

Note that f−k(Dj) has finite measure. Let Cj = Dj ∩ C and define φ by:

φ =
∑
j

ajχ(Aj∩B)\
⋃

i Ci
+
∑
j

bjχCj . (7)

First, let us show that φ ∈ U . Since we have that each Cj ⊆ C,

µ
(
(Aj ∩B)∆

(
(Aj ∩B) \

⋃
i

Ci

))
= µ

(
Aj ∩B ∩

⋃
i

Ci

)
≤ µ

(⋃
i

Ci

)
≤ µ(C) <

( η

4L

)p

and

µ(∅∆Cj) = µ(Cj) ≤ µ(C) <
( η

4L

)p

,

thus, by (3), we obtain

∥χAj∩B − χ(Aj∩B)\
⋃

i Ci
∥ < η

4L
≤ η

2L
and ∥χCj

∥ < η

4L
≤ η

2L
.

Hence, using the triangle inequality,

∥γ1 − φ∥ < η

2
,

showing with (6) that φ ∈ U .
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To see that φ ◦ fk ∈ V , note that, by (7),

φ ◦ fk =
∑
j

ajχf−k((Aj∩B)\
⋃

i Ci) +
∑
j

bjχf−k(Cj).

Since

µ
(
∅∆

(
f−k

(
(Aj ∩B) \

⋃
i

Ci

)))
≤ µ(f−k(B)) <

( η

4L

)p

and
µ(f−k(Cj)∆(Bj ∩B)) ≤ µ(f−k(Dj)∆(Bj ∩B)) = 0,

where f−k(Cj) has finite measure, by the same argument as done above we get that

∥γ2 − φ ◦ fk∥ < η

2
,

which shows that φ ◦ fk ∈ V . We have therefore shown that T k
f (U) ∩ V ̸= ∅.

Analogously, we have a characterization for the mixing composition operators:

Theorem 3.6. Tf : Lp(µ) → Lp(µ) is mixing if, and only if, f−1(B) =ess B and for every measurable
set A of finite measure and any ε > 0, there exist k0 ≥ 1 and a sequence of measurable sets Bk ⊆ A,
k ≥ k0, such that, for all k ≥ k0

µ(A \Bk) < ε, µ(f−k(Bk)) < ε and µ∗(fk(Bk)) < ε.
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